organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(2-hydroxyethylamino)phenyl] sulfone

Guo-Feng Chen,^{a,b} Guo-Chun Ma,^a Jing Hu^a and Wen-Qin Zhang^a*

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bDepartment of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China Correspondence e-mail: chenguofeng@mail.hbu.edu.cn

Received 12 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.110; data-to-parameter ratio = 12.6.

The title compound, $C_{16}H_{20}N_2O_4S$, exhibits a V-shape structure with a dihedral angle of 77.5 (11)° formed by the two benzenel rings. The molecular packing is stabilized by intramolecular and intermolecular hydrogen bonds as well as $\pi - \pi$ [3.738 (3) Å] and C-H··· π interactions.

Related literature

For related literature, see: Shahsafi et al. (1987).

Experimental

Crystal data	
$C_{16}H_{20}N_2O_4S$	b = 8.118 (6) Å
$M_r = 336.40$	c = 15.340 (11) Å
Monoclinic, $C2/c$	$\beta = 102.989 \ (12)^{\circ}$
a = 25.643 (17) Å	V = 3112 (4) Å ³

Z = 8Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.953, T_{\max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.110$ S = 1.032742 reflections 218 parameters 2 restraints T = 294 (2) K $0.20 \times 0.18 \times 0.16$ mm

7793 measured reflections 2742 independent reflections 1982 reflections with $I > 2\sigma$ $R_{\rm int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C14-H14O3	0.93	2.59	2.919 (3)	101
C10−H10···O2	0.93	2.57	2.915 (3)	102
$C7 - H7 \cdot \cdot \cdot O3$	0.93	2.47	2.854 (3)	105
$O1-H1\cdots O3^{i}$	0.82	1.87	2.683 (3)	175
$O1-H1\cdots S1^{i}$	0.82	2.88	3.638 (2)	154
$O4-H4\cdots O2^{ii}$	0.82	2.13	2.945 (3)	177
$N1 - H1C \cdot \cdot \cdot O4^{iii}$	0.892 (10)	2.185 (11)	3.066 (3)	169 (2)
$N2-H2C \cdot \cdot \cdot O1^{iv}$	0.895 (10)	2.027 (11)	2.917 (3)	172 (2)
$C10-H10\cdots Cg2$	0.93	2.97	3.762(4)	144

Symmetry codes: (i) $-x, y + 1, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2122).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shahsafi, M. A., Meshkatalsadat, M. H. & Parekh, H. (1987). *Indian J. Chem.* **26B**, 803–807.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, o174 [doi:10.1107/S1600536807063805]

Bis[4-(2-hydroxyethylamino)phenyl] sulfone

G.-F. Chen, G.-C. Ma, J. Hu and W.-Q. Zhang

Comment

The derivatives of diphenyl sulphone are used as precursors in the organic synthesis. Several derivatives of aminosulphones have been shown to possess strong tuberculostatic, antileprotic and anticonvulsant activities (Shahsafi, *et al.*, 1987). The crystal structure determination of the title compound, (I), was carried out in order to elucidate its molecular conformation.

The V-shape structure of the molecule is supported by the two phenyl rings with a dihedral angle of 77.5 (11)°.

The molecular packing is stabilized by intramolecular and intermolecular hydrogen bonds (Table 1) as well as weak π - π and C—H.. π interactions.

Experimental

The title compound, (I), was synthesized by the reaction of 4,4'-dichlorodiphenyl sulfone (5.74 g, 0.02 mol) with 2-aminoethanol (9.76 g, 0.16 mol). The mixture was refluxed for 6 h and cooled to room temperature. After dilution with water, it was filtered off, washed thoroughly with water, and recrystallized from dimethylformamide and water (4:1 v/v) to give the product as fine white needles (5.5 g, yield 81.8%). The pure product (0.1 g) was dissolved in 15 ml dimethylformamide and water (4:1 v/v). Single crystals were obtained from this solution by slow evaporation over a period of 7 days at room temperature (m.p. 464–466 K).

Refinement

The H atom involved in the hydrogen bonds was found in difference Fourier maps. All other H atoms were positioned geometrically and refined using a during refinement, fix at O–H distances of 0.82 Å and its U_{iso} value was set at 1.2 U_{eq} (O). H atoms bonded to C atoms were included in the refinement in the riding model approximation, with C–H = 0.93 Å. and U_{iso} (H) = 1.2 U_{eq} (C atom).

Figures

Fig. 1. A view of the structure of (I), showing the atom-numbering Scheme; displacement ellipsoids were drawn at the 30% probability level.

Bis[4-(2-hydroxyethylamino)phenyl] sulfone

Crystal data

 $C_{16}H_{20}N_2O_4S$

$M_r = 336.40$	$D_{\rm x} = 1.436 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Melting point: 465(1) K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 25.643 (17) Å	Cell parameters from 2679 reflections
b = 8.118 (6) Å	$\theta = 2.6 - 26.4^{\circ}$
c = 15.340 (11) Å	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 102.989 \ (12)^{\circ}$	T = 294 (2) K
$V = 3112 (4) \text{ Å}^3$	Needle, colorless
<i>Z</i> = 8	$0.20\times0.18\times0.16~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2742 independent reflections
Radiation source: fine-focus sealed tube	1982 reflections with $I > 2\sigma$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -26 \rightarrow 30$
$T_{\min} = 0.953, T_{\max} = 0.966$	$k = -9 \rightarrow 9$
7793 measured reflections	$l = -15 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2 + 1.5895P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.005$
2742 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
218 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.13804 (2)	0.13061 (7)	0.27577 (4)	0.0437 (2)
01	-0.11464 (7)	0.7991 (2)	0.07807 (12)	0.0614 (5)
H1	-0.1153	0.8496	0.1241	0.092*
O2	0.16477 (7)	0.1933 (2)	0.36085 (10)	0.0575 (5)
O3	0.11181 (7)	-0.0265 (2)	0.27233 (11)	0.0551 (5)
O4	0.37876 (7)	-0.1123 (3)	0.00979 (13)	0.0656 (5)
H4	0.3659	-0.1633	0.0460	0.098*
N1	-0.02318 (8)	0.5964 (3)	0.09390 (13)	0.0496 (5)
N2	0.29293 (8)	0.0802 (3)	0.05074 (14)	0.0479 (5)
C1	-0.06999 (11)	0.8469 (3)	0.04713 (18)	0.0605 (7)
H1A	-0.0667	0.9659	0.0504	0.073*
H1B	-0.0749	0.8150	-0.0151	0.073*
C2	-0.01965 (10)	0.7710 (3)	0.09995 (18)	0.0541 (7)
H2A	0.0106	0.8089	0.0771	0.065*
H2B	-0.0140	0.8045	0.1621	0.065*
C3	0.01441 (8)	0.4931 (3)	0.13841 (14)	0.0395 (5)
C4	0.06235 (9)	0.5465 (3)	0.19253 (16)	0.0455 (6)
H4A	0.0692	0.6588	0.1996	0.055*
C5	0.09948 (9)	0.4366 (3)	0.23534 (16)	0.0452 (6)
Н5	0.1314	0.4743	0.2712	0.054*
C6	0.09002 (8)	0.2708 (3)	0.22587 (14)	0.0370 (5)
C7	0.04241 (9)	0.2161 (3)	0.17295 (15)	0.0436 (6)
H7	0.0358	0.1036	0.1664	0.052*
C8	0.00543 (9)	0.3235 (3)	0.13085 (15)	0.0449 (6)
H8	-0.0267	0.2844	0.0961	0.054*
C9	0.18453 (8)	0.1155 (3)	0.21042 (14)	0.0380 (5)
C10	0.23154 (9)	0.2043 (3)	0.23028 (15)	0.0441 (6)
H10	0.2389	0.2729	0.2801	0.053*
C11	0.26711 (9)	0.1918 (3)	0.17704 (16)	0.0450 (6)
H11	0.2989	0.2510	0.1914	0.054*
C12	0.25677 (9)	0.0920 (3)	0.10144 (14)	0.0378 (5)
C13	0.20852 (8)	0.0063 (3)	0.08150 (15)	0.0407 (5)
H13	0.2002	-0.0593	0.0305	0.049*
C14	0.17353 (9)	0.0173 (3)	0.13568 (15)	0.0424 (6)
H14	0.1418	-0.0423	0.1221	0.051*
C15	0.28658 (9)	-0.0244 (3)	-0.02587 (15)	0.0465 (6)
H15A	0.2595	0.0214	-0.0743	0.056*
H15B	0.2745	-0.1321	-0.0115	0.056*
C16	0.33752 (10)	-0.0418 (4)	-0.05525 (17)	0.0554 (7)
H16A	0.3313	-0.1096	-0.1087	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	0.3489	0.0661	-0.0709	0.066*
H1C	-0.0542 (6)	0.548 (3)	0.0693 (15)	0.053 (7)*
H2C	0.3197 (7)	0.153 (2)	0.0623 (15)	0.049 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0429 (3)	0.0529 (4)	0.0352 (3)	0.0069 (3)	0.0084 (2)	0.0087 (3)
01	0.0496 (10)	0.0687 (12)	0.0647 (12)	0.0064 (9)	0.0100 (9)	-0.0226 (10)
O2	0.0570 (10)	0.0800 (13)	0.0318 (9)	0.0134 (10)	0.0023 (8)	0.0028 (8)
O3	0.0590 (10)	0.0523 (10)	0.0570 (11)	-0.0009 (9)	0.0190 (9)	0.0179 (8)
O4	0.0422 (10)	0.0902 (15)	0.0653 (12)	0.0090 (10)	0.0144 (9)	0.0052 (11)
N1	0.0434 (12)	0.0531 (13)	0.0481 (12)	0.0080 (11)	0.0016 (10)	-0.0008 (10)
N2	0.0427 (11)	0.0510 (12)	0.0521 (12)	-0.0059 (10)	0.0150 (10)	-0.0089 (10)
C1	0.0681 (18)	0.0621 (17)	0.0520 (16)	0.0196 (15)	0.0147 (14)	0.0100 (14)
C2	0.0517 (15)	0.0544 (16)	0.0578 (16)	0.0082 (13)	0.0157 (12)	0.0068 (13)
C3	0.0367 (12)	0.0505 (14)	0.0329 (12)	0.0077 (11)	0.0113 (10)	0.0001 (10)
C4	0.0424 (13)	0.0445 (14)	0.0500 (14)	0.0024 (11)	0.0111 (11)	0.0014 (11)
C5	0.0362 (12)	0.0540 (15)	0.0442 (13)	-0.0014 (11)	0.0064 (10)	0.0011 (11)
C6	0.0331 (11)	0.0470 (13)	0.0325 (11)	0.0049 (10)	0.0103 (9)	0.0036 (10)
C7	0.0421 (13)	0.0457 (14)	0.0436 (13)	0.0019 (12)	0.0110 (11)	-0.0027 (11)
C8	0.0359 (12)	0.0553 (15)	0.0413 (13)	0.0018 (11)	0.0043 (10)	-0.0075 (11)
C9	0.0347 (11)	0.0411 (12)	0.0361 (12)	0.0082 (10)	0.0034 (9)	0.0048 (10)
C10	0.0430 (13)	0.0439 (14)	0.0426 (13)	0.0038 (11)	0.0040 (10)	-0.0037 (11)
C11	0.0371 (12)	0.0441 (13)	0.0518 (15)	-0.0028 (11)	0.0060 (11)	-0.0040 (12)
C12	0.0361 (11)	0.0375 (12)	0.0386 (12)	0.0050 (10)	0.0059 (10)	0.0038 (10)
C13	0.0358 (12)	0.0420 (13)	0.0414 (13)	0.0036 (10)	0.0024 (10)	-0.0050 (11)
C14	0.0316 (11)	0.0459 (13)	0.0472 (13)	0.0030 (10)	0.0034 (10)	0.0023 (11)
C15	0.0424 (13)	0.0533 (15)	0.0428 (13)	0.0017 (11)	0.0073 (11)	-0.0014 (11)
C16	0.0544 (15)	0.0697 (18)	0.0444 (14)	-0.0022 (14)	0.0158 (12)	-0.0033 (13)

Geometric parameters (Å, °)

S1—O2	1.4249 (18)	C4—H4A	0.9300
S1—O3	1.4371 (19)	C5—C6	1.370 (3)
S1—C6	1.724 (2)	С5—Н5	0.9300
S1—C9	1.726 (2)	C6—C7	1.379 (3)
O1—C1	1.390 (3)	C7—C8	1.342 (3)
O1—H1	0.8200	С7—Н7	0.9300
O4—C16	1.402 (3)	С8—Н8	0.9300
O4—H4	0.8200	C9—C14	1.373 (3)
N1—C3	1.343 (3)	C9—C10	1.379 (3)
N1—C2	1.422 (3)	C10-C11	1.358 (3)
N1—H1C	0.892 (10)	С10—Н10	0.9300
N2—C12	1.341 (3)	C11—C12	1.390 (3)
N2—C15	1.429 (3)	C11—H11	0.9300
N2—H2C	0.895 (10)	C12—C13	1.393 (3)
C1—C2	1.494 (4)	C13—C14	1.356 (3)
C1—H1A	0.9700	C13—H13	0.9300

C1—H1B	0.9700	C14—H14	0.9300
C2—H2A	0.9700	C15—C16	1.481 (3)
C2—H2B	0.9700	C15—H15A	0.9700
C3—C4	1.389 (3)	C15—H15B	0.9700
C3—C8	1.396 (3)	C16—H16A	0.9700
C4—C5	1.361 (3)	C16—H16B	0.9700
02—\$1—03	118.39 (11)	C7—C6—S1	119.89 (18)
O2—S1—C6	108.63 (11)	C8—C7—C6	120.7 (2)
O3—S1—C6	106.71 (11)	С8—С7—Н7	119.7
02-\$1-C9	107.72 (11)	С6—С7—Н7	119.7
03-\$1-C9	107.12 (11)	C7—C8—C3	121.0 (2)
C6—S1—C9	107.85 (11)	C7—C8—H8	119.5
C1	109.5	C3—C8—H8	119.5
C16—O4—H4	109.5	C14-C9-C10	119.6 (2)
$C_3 = N_1 = C_2$	124.2 (2)	$C_{14} - C_{9} - S_{1}$	119.0(2)
$C_3 = N_1 = H_1C$	121.2(2) 1142(16)	C10-C9-S1	121 22 (18)
C^2 -N1-H1C	120.3 (16)	$C_{11} - C_{10} - C_{9}$	121.22(10) 120.0(2)
$C_{12} N_{12} C_{15}$	123.6(2)	C11_C10_H10	120.0
$C_{12} = N_2 = C_{13}$	125.0(2) 115.0(15)	C_{1} C_{10} H_{10}	120.0
$C_{12} = N_2 = H_2 C_1$	110.9 (15)	$C_{10} = C_{10} = C_{10}$	120.0
C13-N2-H2C	119.8(13) 112.2(2)	C10 - C11 - C12	121.2 (2)
$O_1 = C_1 = C_2$	112.2 (2)		119.4
OI-CI-HIA	109.2		119.4
C2—CI—HIA	109.2	N2-C12-C11	119.9 (2)
OI—CI—HIB	109.2	N2—C12—C13	122.2 (2)
C2—C1—H1B	109.2	C11—C12—C13	117.9 (2)
H1A—C1—H1B	107.9	C14—C13—C12	120.7 (2)
N1—C2—C1	109.9 (2)	C14—C13—H13	119.7
N1—C2—H2A	109.7	С12—С13—Н13	119.7
C1—C2—H2A	109.7	C13—C14—C9	120.7 (2)
N1—C2—H2B	109.7	C13—C14—H14	119.7
C1—C2—H2B	109.7	C9—C14—H14	119.7
H2A—C2—H2B	108.2	N2—C15—C16	111.2 (2)
N1—C3—C4	123.1 (2)	N2—C15—H15A	109.4
N1—C3—C8	119.2 (2)	C16—C15—H15A	109.4
C4—C3—C8	117.7 (2)	N2—C15—H15B	109.4
C5—C4—C3	120.9 (2)	C16—C15—H15B	109.4
C5—C4—H4A	119.6	H15A—C15—H15B	108.0
C3—C4—H4A	119.6	O4-C16-C15	113.5 (2)
C4—C5—C6	120.3 (2)	O4C16H16A	108.9
С4—С5—Н5	119.8	C15—C16—H16A	108.9
С6—С5—Н5	119.8	O4—C16—H16B	108.9
C5—C6—C7	119.4 (2)	C15-C16-H16B	108.9
C5—C6—S1	120.64 (18)	H16A—C16—H16B	107.7
C3—N1—C2—C1	-175.9 (2)	O2—S1—C9—C14	161.83 (17)
O1-C1-C2-N1	60.4 (3)	O3—S1—C9—C14	33.5 (2)
C2—N1—C3—C4	-3.1 (3)	C6—S1—C9—C14	-81.1 (2)
C2—N1—C3—C8	176.8 (2)	O2—S1—C9—C10	-20.3 (2)
N1—C3—C4—C5	-179.1 (2)	O3—S1—C9—C10	-148.70 (18)

supplementary materials

C8—C3—C4—C5	1.0 (3)	C6—S1—C9—C10	96.8 (2)
C3—C4—C5—C6	-0.2 (3)	C14—C9—C10—C11	-1.3 (3)
C4—C5—C6—C7	-0.4 (3)	S1—C9—C10—C11	-179.14 (18)
C4—C5—C6—S1	177.07 (17)	C9-C10-C11-C12	0.9 (3)
O2—S1—C6—C5	37.3 (2)	C15—N2—C12—C11	177.4 (2)
O3—S1—C6—C5	166.02 (17)	C15—N2—C12—C13	-2.2 (3)
C9—S1—C6—C5	-79.2 (2)	C10-C11-C12-N2	-179.1 (2)
O2—S1—C6—C7	-145.26 (17)	C10-C11-C12-C13	0.5 (3)
O3—S1—C6—C7	-16.6 (2)	N2-C12-C13-C14	178.0 (2)
C9—S1—C6—C7	98.25 (19)	C11-C12-C13-C14	-1.6 (3)
C5—C6—C7—C8	0.0 (3)	C12-C13-C14-C9	1.2 (3)
S1—C6—C7—C8	-177.44 (17)	C10-C9-C14-C13	0.3 (3)
C6—C7—C8—C3	0.9 (3)	S1—C9—C14—C13	178.15 (17)
N1—C3—C8—C7	178.8 (2)	C12-N2-C15-C16	-166.6 (2)
C4—C3—C8—C7	-1.4 (3)	N2-C15-C16-O4	61.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C14—H14…O3	0.93	2.59	2.919 (3)	101
С10—Н10…О2	0.93	2.57	2.915 (3)	102
С7—Н7…О3	0.93	2.47	2.854 (3)	105
O1—H1···O3 ⁱ	0.82	1.87	2.683 (3)	175
O1—H1···S1 ⁱ	0.82	2.88	3.638 (2)	154
O4—H4···O2 ⁱⁱ	0.82	2.13	2.945 (3)	177
N1—H1C···O4 ⁱⁱⁱ	0.892 (10)	2.185 (11)	3.066 (3)	169 (2)
N2—H2C···O1 ^{iv}	0.895 (10)	2.027 (11)	2.917 (3)	172 (2)
C10— $H10$ ···Cg2 ^v	0.93	2.97	3.762 (4)	144

Symmetry codes: (i) -*x*, *y*+1, -*z*+1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iii) *x*-1/2, *y*+1/2, *z*; (iv) *x*+1/2, *y*-1/2, *z*; (v) -*x*+1/2, *y*+1/2, -*z*+1/2.

Fig. 1